NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Quantitative Image Analysis of Broadband CARS Microscopy Hyperspectral Images of Polymer Blends
Published
Author(s)
Young Jong Lee, Doyoung Moon, Kalman D. Migler, Marcus T. Cicerone
Abstract
We demonstrate that broadband coherent anti-Stokes Raman scattering (CARS) microscopy can be very useful for fast acquisition of quantitative chemical images of multilayer polymer blends. Since a raw CARS signal results from coherent interference of resonant Raman and nonresonant background, its intensity is not linearly proportional to the concentration of molecules of interest, and it is challenging to perform a quantitative image analysis of a CARS image. Here we have developed a sequence of data processing steps to retrieve background-free and noise-reduced Raman spectra over the whole frequency range including both the fingerprint and C-H regions. Using a classical least squares approach, we are able to decompose a Raman hyperspectral image of a tertiary polymer blend into quantitative chemical images of individual components. We use this method to acquired 3-D sectioned quantitative chemical images of a multilayer polymer blend of polystyrene/styrene-ethylene-propylene-copolymer/polypropylene.
Lee, Y.
, Moon, D.
, Migler, K.
and Cicerone, M.
(2011),
Quantitative Image Analysis of Broadband CARS Microscopy Hyperspectral Images of Polymer Blends, Analytical Chemistry, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=907618
(Accessed October 16, 2025)