NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Purcell and Local-Field Effects in Dielectric Microcavities
Published
Author(s)
A Rahmani, Garnett W. Bryant
Abstract
We present a general, semi-microscopic, self-consistent treatment of spontaneous emission for a two-level atom in a dielectric microcavity with arbitrary shape and size. Lossless and absorbing media are considered. The approach is based on linear-response theory and the coupled dipole method. We compute decay rates and classical frequency shifts. By considering an atom in a spherical cavity, we identify the Purcell effect, the local-field factor and the near-field dipole-dipole interaction, and we show how the real-cavity local-field factor is enhanced by radiation reaction.
Citation
Physical Review Letters
Pub Type
Journals
Keywords
coupled-dipole method, local field, Purcell effect spontaneous emission
Citation
Rahmani, A.
and Bryant, G.
(2008),
Purcell and Local-Field Effects in Dielectric Microcavities, Physical Review Letters
(Accessed October 10, 2025)