NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Pseudo Exhaustive Software Testing Framework for Embedded Digital Devices in Nuclear Power
Published
Author(s)
Athira Jayakumar, D. Richard Kuhn, Brandon Simons, Aidan Collins, Smitha Gautham, Richard Hite, Raghu N. Kacker, Abhi Rajagopala, Carl Elks
Abstract
The major challenge faced by the nuclear industry related to software testing of digital embedded devices is the identification of practical software (SW) testing solutions that provide a strong technical basis and is at the same time effective in establishing credible evidence of software CCF reduction. Towards this effort, we conducted a systematic empirical study on pseudo-exhaustive SW testing methods for embedded digital devices. In this paper, we describe the realization of a testbed for conducting an automated pseudo exhaustive software testing on embedded digital devices and the intricate interactions between the multiple software tools involved in the workflow. The collected results and derived findings confirm the ability of the automated pseudo exhaustive testing methodology to economically exercise the interaction input/state space in a systematic, rigorous, and comprehensive manner.
Jayakumar, A.
, Kuhn, D.
, Simons, B.
, Collins, A.
, Gautham, S.
, Hite, R.
, Kacker, R.
, Rajagopala, A.
and Elks, C.
(2021),
A Pseudo Exhaustive Software Testing Framework for Embedded Digital Devices in Nuclear Power, https://www.ans.org/meetings/am2021/search/?q=kuhn, virtual, TN, US, [online], https://doi.org/10.13182/T124-34544, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932114
(Accessed November 4, 2025)