Abstract
In all types of communication, the ability to share information is often hindered because the meanig of information can be drastically affected by the context in which it is viewed and interpreted. This is especially true in manufacturing because of the growing complexity of manufacturing information and the increasing need to exchange this information among various software applications. Different manufacturing functions may use different terms to mean the exact same concept or use the exact same term to mean very different concepts. Often, the loosely defined natural language definitions associated with the terms contain so much ambiguity that they do not make the differences evident and/or do not provide enough information to resolve the differences. A solution to this problem is the development of a taxonomy, or ontology, of manufacturing concepts and terms along with their respective formal and unambiguous definitions. This paper focuses on the Process Specification Language (PSL) effort at the National Institute of Standards and Technology whose goal is to identify, formally define, and structure the semantic concepts intrinsic to the captureand exchange of discrete manufacturing process information. Specifically, it describes the results of the first pilot implementation, where PSL was successfully used as an interlingua to exchange manufacturing process information between the IDEF3-based ProCAP1 process modeling tool and the C++ based ILOG Scheduler.