NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Julyan Stoian, Tandre Oey, Jeffrey W. Bullard, Jian Huang, Aditya Kumar, Magdalena Balonis, Narayanan Neithalath, Gaurav Sant
Abstract
Ordinary portland cement (OPC) prehydrates during storage or handling in moist environments, forming hydration products on or near its particles' surfaces. Prehydration is known to reduce OPC reactivity, but the extent of prehydration has not yet been quantitatively linked to reaction rate and mechanical property changes. A series of experiments are performed to develop a better understanding of prehydration by intentionally exposing an OPC powder to either water vapor or liquid water. The experiments aim to investigate the extent to which premature contact of OPC with water and other potential reactants in the liquid and/or vapor state(s) can induce differing surface modifications on the OPC grains. Original results obtained using isothermal calorimetry, thermogravimetric analysis and strength measurements are correlated to a prehydration index, which is defined for the first time. Experimental results are used to evaluate hypotheses of mechanisms which control the process. The addition of fine limestone particles to a mixture formed using prehydrated cement is shown to mitigate the detrimental effects of cement prehydration.
Proceedings Title
Proceedings of the 2nd International Congress on Durability of Concrete
Conference Dates
December 4-6, 2014
Conference Location
New Delhi, IN
Conference Title
Second International Congress on Durability of Concrete
Stoian, J.
, Oey, T.
, Bullard, J.
, Huang, J.
, Kumar, A.
, Balonis, M.
, Neithalath, N.
and Sant, G.
(2014),
The Prehydration of Cement and Its Mitigation, Proceedings of the 2nd International Congress on Durability of Concrete, New Delhi, IN, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=917059
(Accessed October 6, 2025)