NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Precision measurement of the radiative beta decay of the free neutron
Published
Author(s)
Jeffrey S. Nico, Kevin J. Coakley, Maynard S. Dewey, Thomas R. Gentile, Hans P. Mumm, Alan Keith Thompson, M J. Bales, R. Alarcon, C. D. Bass, E J. Beise, H Breuer, Jim Byrne, R L. Cooper, B. O'Neill, F E. Wietfeldt, T E. Chupp
Abstract
The theory of quantum electrodynamics predicts that a continuous spectrum of photons is emitted in the beta decay of the free neutron in addition to a proton, an electron, and an antineutrino. We report the first precision test of the shape of the photon energy spectrum from radiative decay and a substantially improved determination of the branching ratio. The photon spectrum was measured over three decades of energy using two different detectors arrays. An annular array of bismuth germanium oxide scintillators detected photons in the energy range of 14 keV to 782 keV. The spectral shape was consistent with theory and we determined a branching ratio of 0.00331 +/- 0.00005 [stat] +/- 0.00015 [syst]. A second detector consisting of large area avalanche photodiodes directly detected photons in the energy range of 0.4 keV to 14 keV. For this array, the spectral shape was consistent with theory and the branching ratio was determined to be 0.00567 +/- 0.00022 [stat] +/- 0.00061 [syst].
Nico, J.
, Coakley, K.
, Dewey, M.
, Gentile, T.
, Mumm, H.
, , A.
, Bales, M.
, Alarcon, R.
, Bass, C.
, Beise, E.
, Breuer, H.
, Byrne, J.
, Cooper, R.
, O'Neill, B.
, Wietfeldt, F.
and Chupp, T.
(2016),
Precision measurement of the radiative beta decay of the free neutron, Physical Review Letters, [online], https://doi.org/10.1103/PhysRevLett.116.242501
(Accessed October 6, 2025)