NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Practical long-distance quantum key distribution system using decoy levels
Published
Author(s)
Danna Rosenberg, Charles G. Peterson, Jim A. Harrington, Patrick R. Rice, N. Dallman, K. T. Tyagi, K. P. McCabe, Sae Woo Nam, Burm Baek, Robert Hadfield, Richard J. Hughes, Jane E. Nordholt
Abstract
Quantum key distribution (QKD) has the potential for widespread real-world applications, but no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here, we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 (BB84)protocol with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels to produce a secret key with unconditional security over a record 140.6 km of optical fibre, an increase of more than a factor of five compared with the previous record for unconditionally secure key generation in a practical QKD system.
Rosenberg, D.
, Peterson, C.
, Harrington, J.
, Rice, P.
, Dallman, N.
, Tyagi, K.
, McCabe, K.
, Nam, S.
, Baek, B.
, Hadfield, R.
, Hughes, R.
and Nordholt, J.
(2009),
Practical long-distance quantum key distribution system using decoy levels, New Journal of Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=33013
(Accessed October 13, 2025)