Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Practical application of microsphere samples for benchmarking a quantitative phase imaging system

Published

Author(s)

Edward Kwee, Alexander Peterson, Michael Halter, John Elliott

Abstract

Quantitative phase imaging (QPI) provides an approach for monitoring the growth rate of individual cells by measuring the optical pathlength of visible light as it is passes through cells. A distinct advantage of QPI is that the measurements are, in principle, instrument-independent and can be compared between different experiments even when performed in different laboratories. Reference materials that induce a well-defined optical pathlength shift and are compatible with QPI imaging systems will be valuable in assuring the accuracy of such measurements on different instruments. In this study, we evaluate seven combinations of microspheres embedded in index refraction matching media as candidate reference materials for benchmarking the performance of a QPI system and as calibration standards for the optical pathlength measurement. One of the microsphere/media combinations was selected and used to evaluate the range of illumination apertures, signal to noise ratios, and focus positions which allows an accurate quantitative optical pathlength measurement. The microsphere-based reference material can be used to verify settings on an instrument are suitable for obtaining an accurate pathlength measurement from biological cells. The microsphere/media reference material is applied to QPI-based dry mass measurements of a population of HEK293 cells to benchmark and provide evidence that the OPI image data is accurate and comparable across laboratories.
Citation
Cytometry Part A

Keywords

Quantitative phase imaging, microscopy, live cell imaging, reference materials, bioimaging

Citation

Kwee, E. , Peterson, A. , Halter, M. and Elliott, J. (2020), Practical application of microsphere samples for benchmarking a quantitative phase imaging system, Cytometry Part A, [online], https://doi.org/10.1002/cyto.a.24291, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930550 (Accessed October 9, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created December 19, 2020, Updated December 19, 2024
Was this page helpful?