Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Powder Thermal Conductivity Measurements in L-PBF using Powder-Included Build Specimens: Internal Geometry Effect

Published

Author(s)

Shanshan Zhang, Brandon Lane, Kevin Chou

Abstract

This study investigates the thermal conductivity of 17-4PH stainless steel powder that was encapsulated into hollow specimens with different internal geometries in laser powder bed fusion (L-PBF) additive manufacturing (AM). The objective is to evaluate the effect of the internal geometry of the hollow specimens on the measurement of the powder thermal conductivity and to compare the thermal properties amongst three different powder materials used in L-PBF. Continued from the previous work [1], three new cone configurations in the hollow specimens were designed and fabricated in an L-PBF system. The thermal conductivity of the internal powder was indirectly measured using an experimental-numerical approach, combined with laser-flash testing, finite element (FE) heat transfer modeling and multivariate inverse method. The results reveal that the thermal conductivity of 17-4PH powder ranges from 0.67 W/(m∙K) to 1.34 W/(m∙K) at 100 °C to 500 °C, and varies with the internal geometry of the specimens. In addition, the measurement of the hollow specimen with a convex cone seems to be a more reliable evaluation. Further, the thermal conductivity ratio of the powder to the solid counterpart of 17-4PH approximately ranges from 3.9 % to 5.5 % at tested temperatures, which is similar to the results obtained from the nickel-based super alloy 625 (IN625) and Ti-6Al-4V (Ti64) powder.
Proceedings Title
Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference (MSEC2020)
Conference Dates
June 22-26, 2020
Conference Location
Cincinnati, OH, US
Conference Title
Manufacturing Science and Engineering Conference (MSEC2020)

Keywords

Laser powder-bed fusion, laser flash, finite element modeling, inverse method, powder thermal conductivity, 17-4PH stainless steel

Citation

Zhang, S. , Lane, B. and Chou, K. (2020), Powder Thermal Conductivity Measurements in L-PBF using Powder-Included Build Specimens: Internal Geometry Effect, Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference (MSEC2020), Cincinnati, OH, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=929642 (Accessed April 25, 2024)
Created September 3, 2020, Updated February 23, 2022