NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Developing hydrogen-bonded organic frameworks (HOFs) that combine functional sites, size control, and storage capability for targeting gas molecule capture is a novel and challenging venture. However, there is a lack of effective strategies to tune the hydrogen-bonded network to achieve high-performance HOFs. Here, a series of HOFs termed as HOF-ZSTU-M (M=1, 2, and 3) with different pore structures are obtained by introducing structure-directing agents (SDAs) into the hydrogen-bonding network of tetrakis (4-carboxyphenyl) porphyrin (TCPP). These HOFs have distinct space configurations with pore channels ranging from discrete to continuous multi-dimensional. Singlecrystal X-ray diffraction (SCXRD) analysis reveals a rare diversity of hydrogen-bonding models dominated by SDAs. HOF-ZSTU-2, which forms a strong layered hydrogen-bonding network with ammonium (NH4 +) through multiple carboxyl groups, has a suitable 1D "pearl-chain" channel for the selective capture of propylene (C3H6). At 298 K and 1 bar, the C3H6 storage density of HOF-ZSTU-2 reaches 0.6 kgL-1, representing one of the best C3H6 storage materials, while offering a propylene/propane (C3H6/C3H8) selectivity of 12.2. Theoretical calculations and in situ SCXRD provide a detailed analysis of the binding strength of C3H6 at different locations in the pearl-chain channel. Dynamic breakthrough tests confirm that HOF-ZSTU-2 can effectively separate C3H6 from multi-mixtures.
Cai, Y.
, Gao, J.
, Li, J.
, Liu, P.
, Zheng, Y.
, Zhou, W.
, Wu, H.
, Li, L.
, Lin, R.
and Chen, B.
(2023),
Pore Modulation of Hydrogen-Bonded Organic Frameworks for Efficient Separation of Propylene, Angewandte Chemie
(Accessed October 17, 2025)