Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PIV Measurements of Water Mist Transport in a Homogeneous Turbulent Flow Past an Obstacle



Cary Presser, G, Papadopoulos, J F. Widmann


To obtain a better understanding of the physical processes involved in liquid suppressant transport in cluttered spaces, particle image velocimetry (PIV) measurements were carried out in the droplet-laden, grid-generated, homogeneous turbulent flow over both an unheated and heated cylinder, and a body-centered cube (BCC) arrangement of spheres. Transport of both water droplets and aerosol particles was characterized upstream and downstream of these obstacles. Data were recorded for the cylinder at ambient and elevated temperatures (at 423 K) to estimate the effects of the hot cylinder surface on droplet transport. The results indicated that smaller droplets are entrained into the recirculation region behind the cylinder while the larger droplets impact the cylinder surface, accumulate and drip off, and/or rebound off the surface and disperse into the free stream. The flow over the heated cylinder resulted in the formation of a vapor layer on the downstream side of the cylinder in the shear region between the recirculation zone and free stream. Thus, aporization of larger droplets impinging on the heated cylinder surface suggests an increased probability of vapor. For the BCC (with a blockage ratio of about 64%), there was both transport of droplets and seed particles around and through the BCC, as well as significantly more liquid accumulation and dripping than for the cylinder.
Fire Safety Journal


Droplet-laden flows, Droplet transport, Fire suppression, Grid-generated turbulence, Heated cylinder, High boiling point suppressants, Homogeneous turbulent flow, Obstructed spaces, Particle image velocimetry, Spray impingement


Presser, C. and Widmann, J. (2006), PIV Measurements of Water Mist Transport in a Homogeneous Turbulent Flow Past an Obstacle, Fire Safety Journal (Accessed February 28, 2024)
Created November 1, 2006, Updated February 19, 2017