Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

A parametric interatomic potential for graphene

Published

Author(s)

Vinod K. Tewary, B. Yang

Abstract

A parametric interatomic potential is constructed for graphene. The potential energy consists of two parts: bond energy and radial interaction energy. The bond energy part is a generalized version of the Tersoff-Brenner potential. It includes angular terms and explicitly accounts for flexural deformation of the lattice normal to the plane of graphene. The range of interaction of each atom extends up to its fourth neighbor atoms in contrast to the Tersoff-Brenner potential that extends to only up to second neighbors. The parameters of the potential are obtained by fitting the calculated values to the cohesive energy, lattice constant, elastic constants, and the phonon frequencies of graphene. The values of the force constants between an atom and other atoms that are within its fourth neighbor distance are calculated. The flexural rigidity of the graphene lattice is calculated in terms of the force constants and is found to be 2.12 eV, which is much higher than 0.797 eV calculated earlier using the Tersoff-Brenner potential.
Citation
Physical Review B (Condensed Matter and Materials Physics)
Volume
79

Keywords

interatomic potential, graphene, force constants, phonon spectra, flexural rigidity, cohesive energy
Created February 27, 2009, Updated February 19, 2017