NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Optical detection of NMR J-spectra at zero magnetic field
Published
Author(s)
M Ledbetter, C.W. Crawford, A Pines, D.E. Wemmer, Svenja A. Knappe, John Kitching, D Budker
Abstract
Nuclear magnetic resonance (NMR) has emerged as one of the most powerful analytical tools for elucidating molecular structure. One of the parameters typically extracted from NMR spectra which is necessary to fully understand the structure of a molecule is the parameter J in the scalar interaction JI1 •I2, first discovered by Hahn and Maxwell and independently by Gutowsky, McCall and Slichter. Conventional detection of NMR relies on large magnetic fields to achieve high sensitivity, and hence, with the exception of field-cycling techniques, nearly all experiments involving J-coupling have been performed under conditions where the Zeeman interaction is by far the dominant term in the Hamiltonian. Here we demonstrate direct detection of hetero- and homonuclear J-coupling in a zero-field environment using an optical atomic magnetometer. We obtain linewidths as low as 0.1 Hz, measure J-coupling constants to an accuracy of 0.004 Hz and realize high signal-to-noise ratio with a sample volume of 80 υL, significantly smaller than has been used in other low-field experiments. Our measurements are in good agreement with density-matrix calculations, and show that the spectra of certain functional groups become greatly simplified at zero field compared to spectra obtained in the Earth's field.
Ledbetter, M.
, Crawford, C.
, Pines, A.
, Wemmer, D.
, Knappe, S.
, Kitching, J.
and Budker, D.
(2009),
Optical detection of NMR <sub>J</sub>-spectra at zero magnetic field, Journal of Magnetic Resonance, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=842586
(Accessed October 14, 2025)