NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Yooyoung Lee, Ross J. Micheals, James J. Filliben, P J. Phillips, Hassan A. Sahibzada
Abstract
Due to its distinctiveness, the human eye is a popular biometricv feature used to identity a person with high accuracy. The Grand Challenge in biometrics is to have an effective algorithm for subject verification or identification under a broad range of image and environmental conditions. As a response to the challenge, this paper presents baseline performance results derived from an enhanced version of VASIR (Video-based Automated System for Iris Recognition), as well as initial performance results based on a broader ocular recognition system. We describe the details of the VASIR procedure and demonstrate its superiority over the IrisBEE baseline algorithm. We examine the relationship between VASIR performance and image quality scores. Finally, for less-contrained imaging conditions, we provide a comparison of iris and ocular recognition results.
Lee, Y.
, Micheals, R.
, Filliben, J.
, Phillips, P.
and Sahibzada, H.
(2011),
Ocular and Iris Recognition Baseline Algorithm, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.IR.7828
(Accessed October 8, 2025)