Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Oblique Incidence Reflectivity of Microwave Radiometer Calibration Targets in G-band

Published

Author(s)

Derek A. Houtz, Dazhen Gu

Abstract

High emissivity temperature-controlled microwave blackbodies, or calibration targets, are often used as brightness temperature reference sources for radiometer calibration. Calibration targets are, in practice, often viewed from a range of angles due to the scanning nature of operational radiometers (e.g. a conical scanning instrument). Ideally, the calibration target has view-angle-independent emissivity of unity, but any deviation from ideality can bias the brightness temperature radiating from the target. Microwave emissivity is not a directly measurable quantity, and instead must be inferred through measurements of reflectivity. We measure reflections from calibration targets by quantifying the magnitude of the standing wave formed by the target as it is linearly stepped through space at sub-wavelength increments. We present monostatic reflectivity results over a range of incidence angles for two types of calibration targets; a periodic pyramidal absorber array and a conical cavity blackbody. Measurements are presented at 165.5 GHz and 183.3 GHz, two channels of interest for environmental remote sensing. We find that the pyramidal array has higher reflectivity than the conical cavity at both frequencies and across the range of incidence angles, and we find that the pyramidal array has a larger range of reflectivity across the range of incidence angles. The reflectivity magnitude decreases as a function of incidence angle for both geometries, with local maxima at normal incidence except for the pyramidal array at 165.5 GHz. The considerable angular variation in reflectivity observed for the pyramidal array could potentially cause significant calibration bias as large as 0.12 K.
Proceedings Title
2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)
Conference Dates
March 27-30, 2018
Conference Location
Cambridge, MA, US

Keywords

radiometer calibration, microwave blackbody, passive microwave, remote sensing

Citation

Houtz, D. and Gu, D. (2018), Oblique Incidence Reflectivity of Microwave Radiometer Calibration Targets in G-band, 2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Cambridge, MA, US, [online], https://doi.org/10.1109/MICRORAD.2018.8430724 (Accessed January 28, 2023)
Created August 13, 2018, Updated February 16, 2022