Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Nonterminating transformations and summations associated with some q-Mellin-Barnes integrals

Published

Author(s)

Howard Cohl, Roberto Costas-Santos

Abstract

In many cases one may encounter an integral which is of $q$-Mellin--Barnes type. These integrals are easily evaluated using theorems which have a long history dating back to Slater, Askey, Gasper, Rahman and others. We derive some interesting $q$-Mellin--Barnes integrals and using them we derive transformation and summation formulas for nonterminating basic hypergeometric functions. The cases which we treat include ratios of theta functions, the Askey--Wilson moments, nonterminating well-poised $}_3\phi_2$, nonterminating very-well-poised $}_5W_4$, $}_8W_7$, products of two nonterminating $}_2\phi_1$'s and squares of a nonterminating well-poised $}_2\phi_1$.
Citation
Advances in Applied Mathematics
Volume
147

Keywords

q-calculus, Nonterminating basic hypergeometric functions, Nonterminating transformations, Nonterminating summations, Integral representations, q-Mellin–Barnes integrals, Askey–Wilson polynomials, Askey–Wilson moments

Citation

Cohl, H. and Costas-Santos, R. (2023), Nonterminating transformations and summations associated with some q-Mellin-Barnes integrals, Advances in Applied Mathematics, [online], https://doi.org/10.1016/j.aam.2023.102517, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934485 (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created March 1, 2023, Updated May 3, 2023
Was this page helpful?