NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Near-field microwave microscope measurements to characterize bulk material properties
Published
Author(s)
Atif A. Imtiaz, Thomas Baldwin, Hans T. Nembach, Thomas M. Wallis, Pavel Kabos
Abstract
We measured bulk dielectric (Fused Silica), semiconductor (Silicon) and metal (Copper), with a Near-field Scanning Microwave Microscope (NSMM). We use three bulk materials to test the existing quasi-static theoretical approach to de-embed the materials properties of bulk materials. The known quasi-static models fit the data well with reasonale parameters for Silicon εs = 11.9, ς si = 50 S/m), and Fused Silicon εs = 4.44, tanδ = 1.3 x 10-4). However, for Copper, apart from quasi-static coupling with ςcu = 5.67x107 S/m), an additional resistive loss of 12 {Ω} originating from the Hertzian vertical-electric-dipole above homogenous conducting half-space is needed to fit the data. we also discuss the distinction of these bulk-materials upon the basis of the magnitude of their complex permittivity.
Imtiaz, A.
, Baldwin, T.
, Nembach, H.
, Wallis, T.
and Kabos, P.
(2007),
Near-field microwave microscope measurements to characterize bulk material properties, Applied Physics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=32646
(Accessed October 11, 2025)