NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Multiscale Modeling of Germanium Quantum Dots in Silicon
Published
Author(s)
Vinod Tewary, David T. Read
Abstract
A method is described for multiscale modeling of a quantum dot in a semiconductor containing a free surface. The method is based upon the use of the lattice-statics and continuum Green's functions integrated with classical molecular dynamics. It fully accounts for the nonlinear discrete lattice effects inside and close to the quantum dot, discrete lattice structure of the solid at the atomistic scale near the quantum dot and reduces asymptotically to the macroscopic continuum model near the free surface. A major advantage of the lattice-statics Green's function is that it can model a large crystallite containing a million atoms without excessive GPU effort and it connects nanoscales seamlessly to macroscales. The method relates the physical processes such as lattice distortion at the atomistic level to measurable macroscopic parameters such as strains at a free surface in the solid. The method is applied to calculate the lattice distortion around a Ge quantum dot in Si.
Tewary, V.
and Read, D.
(2005),
Multiscale Modeling of Germanium Quantum Dots in Silicon, Intl. Workshop on Nanomechanics, Asilomar, CA, USA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50077
(Accessed October 10, 2025)