Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Multiplexed “Detectorless” Electrophoresis

Published

Author(s)

David J. Ross, Jason G. Kralj

Abstract

A new microfluidic electrophoresis device and technique is described that is designed specifically for multiplexed, high throughput separations. The device consists of an array of short (3 mm) capillaries connecting individual sample reservoirs to a common buffer reservoir. Each capillary in the array functions as both a separation channel and as a conductivity-based detection cell. The new technique is based upon the recently described gradient elution moving boundary electrophoresis (GEMBE) technique, which uses a combination of an electric field and buffer counterflow to achieve high resolution separations in short capillaries. A high voltage drives electrophoresis of the sample analytes through each capillary. At the start of a separation, the bulk counterflow of buffer through the channel is high, and none of the analytes of interest can enter the channel. The counterflow is then gradually reduced until each analyte, in turn, is able to enter the channel where it is detected as a moving boundary or step. With very short capillaries, only one step at a time is present in each capillary, and the electric current through the channels can then be used as the detector signal – without any extra detector hardware. The current vs. time signal for each channel is then smoothed and differentiated to produce a set of simultaneous electropherograms. Because there is no light source or other added hardware required for detection, the system is simple and can be easily and inexpensively scaled up to perform large numbers of simultaneous analyses. As a first demonstration, a 16-channel array device is used for high-throughput, time-series measurements of enzyme activity and inhibition.
Citation
Electrophoresis

Keywords

conductivity detection, gradient elution moving boundary electrophoresis

Citation

Ross, D. and Kralj, J. (2008), Multiplexed “Detectorless” Electrophoresis, Electrophoresis (Accessed June 17, 2021)
Created December 15, 2008, Updated February 17, 2017