NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Carl G. Simon Jr., Kaushik Chatterjee, Christopher K. Tison, Girish Kumar, Patrick S. Pine, Marc L. Salit, Jennifer H. McDaniel, Marian F. Young
Abstract
Cells are sensitive to tissue scaffold architecture and these cell-material interactions drive cell functions critical in tissue regeneration. Results presented here demonstrate that nanofiber scaffolds force primary human bone marrow stromal cells (hBMSCs) into a morphology that induces osteogenesis even in the absence of biochemical cues. We cultured hBMSCs on a library of scaffolds with systematically varied structure and composition. Scaffolds with nanofibrous architectures consistently induced hBMSCs to synthesize a bone-like matrix. Gene expression profiles of hBMSCs on nanofibers closely matched osteogenic controls where hBMSCs were cultured on flat surfaces with osteogenic supplements. hBMSCs on nanofibers assumed a spindly, elongated morphology identical to cells in osteoinductive medium on flat surfaces that was significantly different from the spread morphology on flat surfaces in the absence of osteoinductive factors. These results demonstrate that nanofiber scaffolds induce spontaneous osteogenic differentiation of hBMSCs by causing them to adopt an osteogenic morphology.
Simon, C.
, Chatterjee, K.
, Tison, C.
, Kumar, G.
, Pine, P.
, Salit, M.
, McDaniel, J.
and Young, M.
(2011),
Morphological Changes Driven by Nanofibrous Scaffolds Induce Marrow Stromal Cell Osteogenesis, Nature Materials
(Accessed October 7, 2025)