Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A Molecular Dynamics Study of a Reversed-Phase Liquid Chromatography Model

Published

Author(s)

J T. Slusher, Raymond D. Mountain

Abstract

We describe a molecular dynamics simulation study of a model of the reverse-phase chromatographic system. The model consists of a slab of aqueous solvent sandwiched between two walls having attached C8 hydrocarbon chains at a surface coverage of 5.09 mol/m2 or 32,6 {Angstrom}2 / chain. Long-ranged Coulombic interactions are taken into account using the Ewald sum method of Rhee, et al. [Phys. Rev. B, 40, 36, 1989]. The density and solvent orientation profiles are computed as a function of distance from the walls. The density profiles are found to be sensitive to the treatment of the long-ranged electrostatic interactions. The presence of an organic cosolvent (methanol or acetonitrile) at 30.8 mole % has little effect on the chain structure, which is largely collapsed against the walls. We also estimate the change in residual Helmholtz free energy along the pore width for a methane solute in the acetronitrile/water system, which indicates that a substantial portion of the free energy driving force for retention occurs in an organic-rich layer of solvent adsorbed to the hydrocarbon phase.
Citation
Journal of Physical Chemistry B
Volume
103
Issue
No. 8

Keywords

acetonitrile, Helmholtz free energy, liquid chromatography, liquid-liquid interface, methanol, molecular dynamics, water

Citation

Slusher, J. and Mountain, R. (1999), A Molecular Dynamics Study of a Reversed-Phase Liquid Chromatography Model, Journal of Physical Chemistry B (Accessed October 15, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created February 1, 1999, Updated February 17, 2017
Was this page helpful?