Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Modifying electron transfer at the silicon-molecule interface using atomic tethers



Christina A. Hacker


We present the correlation of the electronic properties at the semiconductor-molecule interface with the nature of the covalent attachment. The chemical state, monolayer structure, and electronic properties of aliphatic monolayers with Si-O, Si-C, and Si-S covalent linkages on Si(111) surfaces were investigated with contact angle wetting, spectroscopic ellipsometry, infrared vibrational spectroscopy, x-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy. Vibrational spectra indicate aliphatic films tethered to Si with few gauche defects in agreement with hydrophobic contact angles and ellipsometric thickness measurements. Core level electronic spectra taken as a function of semiconductor doping reveal shifts in binding energy attributed to molecular bonding. Valence band spectra reveal the work function of the molecule-Si composite as a function of semiconductor doping and atomic tether. By combining valence band spectra with core level spectra, the electronic properties of the molecule-Si system can be understood. In particular, the relative contribution of charge transfer due to surface band bending and the polarization due to molecular dipoles was determined. The O, C, and S atomic tethers induce differing amounts of band bending and interface dipoles which can be utilized to engineer the electronic properties of molecule-semiconductor junctions.
Solid State Electronics


molecular electronics, silicon, monolayers, atomic dipole, work function, photoelectron spectroscopy


Hacker, C. (2010), Modifying electron transfer at the silicon-molecule interface using atomic tethers, Solid State Electronics, [online], (Accessed July 17, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created August 10, 2010, Updated February 19, 2017