Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Modification of PET surfaces with self-assembled monolayers of organosilane precursors



Daniel A. Fischer, Ali Ozcam, Kirill Effimenko, Cherno Jaye, Richard Spontak, Jan Genzer


We report on a facile, robust and rapid method by which poly(ethylene terephthalate) (PET) surfaces can be chemically modified while avoiding chemical degradation. Specifically, we demonstrate that brief exposure of PET surfaces to ultraviolet/ozone (UVO) generates a large surface concentration of hydrophilic moieties that serve as points of chemical attachment, thereby facilitating subsequent chemisorption of organosilane precursors. The feasibility of this methodology is tested by decorating UVO-modified PET surfaces with semifluorinated organosilane (SFOS) molecules, which serve to alter the surface energy of PET without compromising its bulk characteristics. The physico-chemical properties of the SFOS layers attached to PET are studied with a palette of experimental probes, including near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron (XPS) spectroscopy, contact angle, atomic force microscopy (AFM), and ellipsometry. Experimental results indicate that ≈2 min of UVO treatment is optimal for covering PET with dense self-assembled monolayers (SAMs) of SFOS. Longer UVO treatment times contaminate and correspondingly roughen PET surfaces with low-molecular weight organic compounds (LMWOCs) generated from degradation of the topmost PET material. As a consequence, SFOS SAMs attached to the LMWOC layer wash off readily from UVO-treated PET.
Journal of Electron Spectroscopy and Related Phenomena


poly(ethylene terephthalate) (PET), ultraviolet/ozone (UVO), polymer surface modification, SAM, NEXAFS


Fischer, D. , Ozcam, A. , Effimenko, K. , Jaye, C. , Spontak, R. and Genzer, J. (2009), Modification of PET surfaces with self-assembled monolayers of organosilane precursors, Journal of Electron Spectroscopy and Related Phenomena, [online], (Accessed June 19, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created May 13, 2009, Updated February 19, 2017