Model-based Cosimulation for Industrial Wireless Networks

Published: June 15, 2018


Ging Jeng, Honglei Li, Yanzhou Liu, Yongkang Liu, Mohamed T. Hany, Richard Candell, Shuvra Bhattacharyya


Wireless communications technology has the potential to provide major benefits in lowering the cost and increasing the efficiency of factory automation (FA) systems. However, design of FA systems that employ wireless networks involves stringent constraints on real-time performance and reliability, and requires the assessment of and experimentation with complex interactions among process control, factory topology construction (layout and connectivity of subsystems, such as machines, rails, etc.), and wireless communication. In this paper, we introduce a novel simulation framework to support such assessment and experimentation in the design of next- generation FA systems. Our simulation framework employs model-based design principles to enhance design reliability, and enable systematic and efficient integration of control, topology, and network modeling aspects. We demonstrate the utility of our framework through a case study that involves topology design and scalability analysis for a large class of FA systems. Our results demonstrate the ability of the proposed framework to provide insights on complex design trade-offs, while the underlying model-based features enhance efficient and reliable system-level integration.
Proceedings Title: Proceedings of the 14th IEEE International Workshop on Factory Communication Systems
Conference Dates: June 12-15, 2018
Conference Location: Imperia, -1
Conference Title: 14th IEEE International Workshop on Factory Communication Systems
Pub Type: Conferences


wireless, automation, factory communication
Created June 15, 2018, Updated May 15, 2018