Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Mid-Infrared Time-Resolved Frequency Comb Spectroscopy of Transient Free Radicals

Published

Author(s)

Adam J. Fleisher, Bryce Bjork, Thinh Q. Bui, Kevin C. Cossel, Mitchio Okumura, Jun Ye

Abstract

Quantitative measurements in chemical kinetics require unambiguous determinations of reactant, intermediate, and product concentrations on time scales faster than the reaction rate. Direct absorption spectroscopy in the mid-infrared (mid-IR) can fulfill the quantitative requirement, often with high detection sensitivities, thanks to strongly absorbing fundamental molecular vibrations. Here, we demonstrate a new broadband transient absorption technique, time-resolved frequency comb spectroscopy (TRFCS), for the study of chemical kinetics on the μs timescale. We use TRFCS to study the time-resolved, mid-IR absorption of the deuterated hydroxyformyl radical trans-DOCO, an important short-lived intermediate along the OH + CO reaction path. Directly after photolysis of a chemical precursor, we measure an absolute trans-DOCO concentration of 3.10(5) x 1012 molecule cm-3 and observe its subsequent reaction rate with a time resolution of 25 us.
Citation
Journal of Physical Chemistry Letters
Volume
5

Keywords

Femtosecond optical frequency combs, mid-infrared spectroscopy, radical reactions, chemical kinetics
Created June 10, 2014, Updated November 10, 2018