An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Microstructural and Structural Characterization of Materials for CO2 storage using Multi-Scale X-Ray Scattering Methods
Published
Author(s)
Greeshma Gadikota, Andrew J. Allen
Abstract
A multi-scale understanding of CO2 interactions with natural materials is essential for engineering the safe and permanent storage of CO2 in geologic formations. Towards this end, the use of ultra small-, small-, and wide-angle X-ray scattering methods (USAXS/SAXS/WAXS) bridges our current understanding between theoretical nano-scale material interactions with CO2 and large-scale trapping and percolation pathways of CO2 in geologic formations. The latest advancements in synchrotron radiation have enabled multi-scale microstructural and structural characterization of geologic materials with CO2. In this book chapter, we compare the use of X-ray scattering techniques with other microstructural material measurement techniques, discuss the fundamental relationships governing the scattering measurements and microstructural properties such as the surface area, porosity, , and illustrate the application of USAXS/SAXS/WAXS methods for the adsorption of CO2 on Na-montmorillonite containing a monolayer of interlayer water.
Citation
Materials and Processes for CO2 Capture, Conversion, and Sequestration
Gadikota, G.
and Allen, A.
(2018),
Microstructural and Structural Characterization of Materials for CO2 storage using Multi-Scale X-Ray Scattering Methods, John Wiley & Sons, Hoboken, NJ
(Accessed December 12, 2024)