Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A Microscope of Glassy Relaxation in Femtogram Samples: Charge Offset Drift in the Single Electron Transistor

Published

Author(s)

Neil M. Zimmerman, William Huber

Abstract

By measuring the long-term charge offset drift in single electron tunneling transistors, we have observed a transient relaxation after fabrication which is correlated with the presence of amorphous insulator. The temperature and time dependence of the transient relaxation are both in agreement with an extension of the standard model for two-level systems in glasses. This technique, which is sensitive to atomic scale motion in femtogram-sized samples, offers the possibility of a new technique for investigation of glassy relaxation.
Citation
Physical Review Letters

Keywords

Glassy relaxation, femtogram samples, single electron transistor

Citation

Zimmerman, N. and Huber, W. (2009), A Microscope of Glassy Relaxation in Femtogram Samples: Charge Offset Drift in the Single Electron Transistor, Physical Review Letters, [online], https://doi.org/10.1103/PhysRevB.80.195304 (Accessed September 14, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created November 3, 2009, Updated November 10, 2018