Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Micromagnetic Study of Soft Magnetic Nanowires

Published

Author(s)

Farzad Ahmadi, Michael J. Donahue, Yilmaz Sozer, Igor Tsukerman

Abstract

In this paper, micromagnetic analysis of an array of long magnetic nanowires (NWs) embedded in a nonmagnetic matrix is performed. It is found that for NWs with diameters on the order of a hundred nanometers, the anisotropy and exchange energies are negligible, so the total free energy is a sum of the Zeeman and magnetostatic energies. The minimum magnetostatic energy corresponds to the maximum Zeeman energy, whereby half of the NWs are magnetized parallel to the external field, while the rest of the NWs are magnetized antiparallel to the external fields. The study shows a vortex behavior of the magnetic moments in the magnetization reversal process. Additionally, the average hysteresis loop area of the nanocomposite is inversely proportional to the NW diameter in the range from 20 to 200 nm. The results pave the way for designing of NW-based devices such as optimized magnetic sensors for biomedical applications with a trade-off between miniaturization and energy loss.
Citation
AIP Advances

Keywords

micromagnetic simulation, soft magnetic nanowires, array of nanowires, hysteresis of nanowires
Created December 27, 2019, Updated May 19, 2020