NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Measurement Uncertainty of Surface Temperature Distributions for Laser Powder Bed Fusion Processes
Published
Author(s)
David Deisenroth, Sergey Mekhontsev, Brandon Lane, Leonard M. Hanssen, Ivan Zhirnov, Vladimir Khromchenko, Steven Grantham, Daniel Cardenas-Garcia, Alkan Donmez
Abstract
This paper describes advances in measuring the characteristic spatial distribution of surface temperature and emissivity during laser-metal interaction under conditions relevant for laser powder bed fusion (LPBF) additive manufacturing processes. Detailed descriptions of the measurement process, results, and approaches to determining uncertainties are provided. Measurement uncertainties have complex dependencies on multiple process parameters, so the methodology is demonstrated on one set of process parameters and one material. Well-established literature values for high-purity nickel solidification temperature and emissivity at the solidification temperature were used to evaluate the predicted uncertainty of the measurements. The standard temperature measurement uncertainty is found to be approximately 0.9 % of the absolute temperature (16 °C), and the standard relative emissivity measurement uncertainty is found to be approximately 8 % at the solidification point of high-purity nickel, both of which are satisfactory. This paper also outlines several potential sources of test uncertainties, which may require additional experimental evaluation. The largest of these are the metal vapor and ejecta that are produced as process by-products, which can potentially affect the imaging quality, reflectometry results, and thermal signature of the process, while also affecting the process of laser power delivery. Furthermore, the current paper focuses strictly on the uncertainties of the emissivity and temperature measurement approach and therefore does not detail a variety of uncertainties associated with experimental controls that must be evaluated for future generation of reference data.
Deisenroth, D.
, Mekhontsev, S.
, Lane, B.
, Hanssen, L.
, Zhirnov, I.
, Khromchenko, V.
, Grantham, S.
, Cardenas-Garcia, D.
and Donmez, A.
(2021),
Measurement Uncertainty of Surface Temperature Distributions for Laser Powder Bed Fusion Processes, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/jres.126.013, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931171
(Accessed October 9, 2025)