NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Holger Laabs, Darryl A. Keenan, Shao Yang, Marla L. Dowell
Abstract
We have developed a measurement system based on a correlation method to characterize the nonlinearity of a detector's response over a large range of laser pulse energy. The system consists of an excimer-laser source, beam-shaping optics, a beam splitter, a monitor detector, a set of optical filters, and the detector under test. Detector nonlinearities as large as 10% or greater over an entire measurement range at an excimer-laser wavelength of 193 nm are observed. The measurement range of the current system is approximately 300 nJ to 50 mJ of laser pulse energy at the detector under test. The typical expanded measurement uncertainty of nonlinearity is 0.6% (k _ 2).
Laabs, H.
, Keenan, D.
, Yang, S.
and Dowell, M.
(2005),
Measurement of detector nonlinearity at 193 nm, Optics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=31776
(Accessed October 13, 2025)