Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Many-body physics in small systems: Observing the onset and saturation of correlation in linear atomic chains



Emily A. Townsend, Tom?a?s Neuman, Alex Debrecht, Javier Aizpurua, Garnett W. Bryant


The exact study of small systems can guide us toward relevant measures for extracting information about many-body physics as we move to larger and more complex systems capable of quantum information processing or quantum analog simulation. We use exact diagonalization to study many electrons in short 1-D atom chains represented by long-range extended Hubbard-like models. We introduce a novel measure, the Single-Particle Excitation Content (SPEC) of an eigenstate and show that the dependence of SPEC on eigenstate number reveals the nature of the ground state (ordered phases), and the onset and saturation of correlation between the electrons as Coulomb interaction strength increases. We use this SPEC behavior to identify five regimes as interaction is increased: a non-interacting single-particle regime, a regime of perturbative Coulomb interaction in which the SPEC is a nearly universal function of eigenstate number, the onset and saturation of correlation, a regime of fully correlated states in which hopping is a perturbation and SPEC is a different universal function of state number, and the regime of no hopping. While SPEC is a quantity that can be calculated for small exactly diagonalizable systems, it guides our intuition for larger systems, suggesting the nature of excitations and their distribution in the spectrum. Thus, this function, like correlation functions or order parameters, provides us with a window of intuition about the behavior of a physical system. In this case it shows that when electron-electron correlation plays a minor role, all of the lowest energy eigenstates are made up primarily of single-particle excitations of the ground state, and as the Coulomb interaction increases, the lowest energy eigenstates increasingly contain many-particle excitations. The SPEC also highlights a fundamental, distinct difference between a non-interacting system and one with minute, very weak interactions.
Physical Review B


Hubbard model, excited states, many-body physics, correlation


Townsend, E. , Neuman, T. , Debrecht, A. , Aizpurua, J. and , G. (2021), Many-body physics in small systems: Observing the onset and saturation of correlation in linear atomic chains, Physical Review B, [online],, (Accessed April 22, 2024)
Created May 20, 2021, Updated June 9, 2021