NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
The current-induced magnetization dynamics of a spin valve are studied using a macrospin (single-domain) approximation and numerical solutions of a generalized Landau-Lifshitz-Gilbert equation. For the purpose of quantitative comparison to experiment [S. I. Kiselev, J. C. Sankey, I. N. Krivortov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature 425, 380 (2003)], we calculate the resistance and microwave power as a function of current and external field, including the effects of anisotropies, damping, spin-transfer torque, thermal fluctuations, spin-pumping, and incomplete absorption of transverse spin current. Although many features of experiment appear in the simulations, there are two significant discrepancies: the current dependence of the precession frequency and the presence and/or absence of a microwave quiet magnetic phase with a distinct magnetoresistance signature. Comparison is made to micromagnetic simulations designed to model the same experiment.
Citation
Physical Review B (Condensed Matter and Materials Physics)
Xiao, J.
, Zangwill, A.
and Stiles, M.
(2005),
Macrospin Models of Spin Transfer Dynamics, Physical Review B (Condensed Matter and Materials Physics)
(Accessed October 17, 2025)