Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Macroscopic Subkelvin Refrigerator Employing Superconducting Tunnel Junctions



Xiaohang NMN Zhang, Peter J. Lowell, Brandon L. Wilson, Galen C. O'Neil, Joel N. Ullom


In this paper, we demonstrate a general-purpose macroscopic refrigerator based on the transport of hot electrons through superconducting tunnel junctions. Our refrigerator is intended to provide access to temperatures below those accessible using pumped 3He. The refrigerator is cooled by 96 Normal-metal/Insulator/Superconductor (NIS) junctions divided among three separate silicon substrates. The use of thin-film devices on different substrates shows the potential to achieve higher cooling powers by connecting NIS devices in parallel. Improving on previous work, we demonstrate a larger temperature reduction, a more robust mechanical suspension, and a new electromechanical heat switch that will make it easier to integrate our refrigerator into other cryostats. The electromechanical heat switch has a measured thermal conductance in the on state of 1.2 ± 0.3 μW/K at 0.3 K and no thermal conductance in the off state. We observe a temperature reduction from 291 mK to 228 mK in a copper stage with 28 cm2 of area for attaching user-supplied devices.
Physical Review Applied


Tunnel Junction Refrigerators, Superconducting Devices
Created August 10, 2015, Updated November 10, 2018