Localization and Number of Au Nanoparticles in Optically Indexed Cells by FIB Tomography

Published: August 02, 2015


Aric W. Sanders, Kavita M. Jeerage, Ann C. Chiaramonti Debay, Alexandra Curtin


Gold nanoparticles (GNPs) are gaining importance as therapeutic chemical delivery vehicles, medical diagnostic tools, phototherapeutic and contrast enhancement agents. GNPs are uniquely suited for these biological uses because of their chemical stability, novel optical properties, and broad potential for functionalization. Additionally, each of these beneficial properties is further enhanced by the ability to manufacture GNPs in an almost endless combination of sizes and shapes. This versatility has allowed researchers to access and modify biological processes inside of a large variety of cells, and the observation of innocuous uptake of citrate stabilized GNPs [1]. To describe the effect of the GNPs on these cells, characterization of affected organisms and tissues is required from the macroscopic to nanoscopic level. In particular, the location of cells in the tissue or culture of interest and then the mapping of the number and spatial distribution of the GNPs inside of those cells is required, and frequently requires multiple imaging techniques [2]. We achieve the large scale mapping of the cells using reflection optical microscopy and then explore the number and location of the nanoparticles inside of mammalian stem cells after exposure to 60 nm GNPs using focused ion beam – scanning electron (FIB-SEM) based tomography.
Proceedings Title: Microscopy and Microanyalsis
Conference Dates: August 2-6, 2015
Conference Location: Portland, OR
Pub Type: Conferences


Cells, FIB Tomography, Gold Nanoparticles
Created August 02, 2015, Updated November 10, 2018