NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
This paper introduces a novel methodology that enables recognition of distributional functions without doing a fit of the data to the distribution. This methodology combines the technique of equation signatures, which uses coefficient independent properties of equations for recognition, with amachine learning algorithm, C4.5, to obtain accurate recognitionof distributional functions. The signature of a distributionalfunction is a linear probability plot. Thus this methodologyautomates the formation and interpretation of probability plots.This combination is shown to be more accurate than probabiltyplots alone for samples of size one hundred on a group of eighteen noise models comprising four symmetric distributionsof varying tail lengths and fourteen noise models drawnfrom the extreme value family. An analysis of the C4.5 rulesindicates how to create the most predictive attributes forthe general case.
decision tree, distribution finding, equation discovery, equation signatures, function finding, learning, probability plotting
Citation
Devaney, J.
, Hunter, L.
and Filliben, J.
(2021),
Learning to Recognize Distributional Functions, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD
(Accessed November 4, 2025)