NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Laser Range-, Color-, and Texture-Based Classifiers for Segmenting Marginal Roads
Published
Author(s)
C E. Rasmussen
Abstract
We describe preliminary results on combining depth information from a laser range-finder and color and texture image cues to train classifiers to segment ill-structured dirt, gravel, and asphalt roads as input to an autonomous road following system. A large number of registered laser and camera images were captured at frame-rate on a variety of rural roads, allowing laser features such as 3-D height and smoothness to be correlated with image features such color histograms and Gabor filter responses. A small set of road models were generated by training separate neural networks on labeled feature vectors clustered by road type.'' By first classifying the type of a novel road image, an appropriate second-stage classifier was selected to segment individual pixels, achieving a high degree of accuracy on arbitrary images from the dataset.
Proceedings Title
Proceedings of the Conference on Computer Vision & Pattern Recognition Technical Sketches
Conference Dates
December 1, 2001
Conference Title
Conference on Computer Vision & Pattern Recognition Technical Sketches
Rasmussen, C.
(2001),
Laser Range-, Color-, and Texture-Based Classifiers for Segmenting Marginal Roads, Proceedings of the Conference on Computer Vision & Pattern Recognition Technical Sketches
(Accessed November 3, 2025)