NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Laser Path Planning and Power Control Strategies for Powder Bed Fusion Systems
Published
Author(s)
Ho Yeung, Jorge Neira, Brandon Lane, Jason Fox, Felipe F. Lopez
Abstract
In laser powder bed fusion additive manufacturing process, laser scan path, velocity, and power are some of the most important parameters affecting the build quality. Control strategies for laser path and power are implemented and tested on a prototype testbed based on industrial standard G-code type programming language (referred to as AM G-code). The proposed AM G-code demonstrates different modes which define power-velocity-position profiles, and account for the laser and scanner dynamics. AM G-code is interpreted into xy2-100 protocol, and sent to the galvo scanners and laser using a custom transmitter. The actual scan path is compared with the commanded path during controlled tests. The proposed AM G-code interpreter modes are then evaluated considering the measured dynamic system response, and further discussed in contrast to commercial powder bed fusion systems.
Proceedings Title
Proceedings of the Solid Freeform Fabrication Symposium
Yeung, H.
, Neira, J.
, Lane, B.
, Fox, J.
and Lopez, F.
(2016),
Laser Path Planning and Power Control Strategies for Powder Bed Fusion Systems, Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=921536
(Accessed October 10, 2025)