NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Kinematic Modeling and Analysis of a Planar Micro-Positioner
Published
Author(s)
Nicholas G. Dagalakis, John A. Kramar, E Amatucci, Robert Bunch
Abstract
The static and dynamic performance of a control system depends on the accuracy of the mathematical model of the plant that is being controlled. In this work, the accuracies of a linear and a second-order kinematic model were evaluated for a two-dimensional, planar, micro-positioner plant. The model performances were evaluated for a variety of testing conditions including a variation of the number of test points, the addition of sensor noise, and six different least-squares fitting algorithms. In general, decreasing the number of fitting points or increasing the noise results in worse performance, as expected. The second-order model was better for low noise and larger data sets, but was worse under the more challenging conditions. All but one of the least-squares algorithms performed similarly well.
Volume
25
Conference Dates
November 10-15, 2001
Conference Location
Arlington, VA
Conference Title
Proceedings of the American Society for Precision Engineering
Dagalakis, N.
, Kramar, J.
, Amatucci, E.
and Bunch, R.
(2001),
Kinematic Modeling and Analysis of a Planar Micro-Positioner, Proceedings of the American Society for Precision Engineering, Arlington, VA
(Accessed October 11, 2025)