NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Inverse Method for Estimating Shear Stress in Machining
Published
Author(s)
Timothy J. Burns, Steven P. Mates, Richard L. Rhorer, Eric P. Whitenton, Debasis Basak
Abstract
An inverse method is presented for estimating the shear stress in the work material in the region of chip-tool contact along the rake face of the tool during orthogonal machining. The method uses an estimate of the temperature of the work material as it exits the primary shear zone, an experimental measurement of the peak temperature in the work material along the tool-chip interface, and a two-zone empirically based contact model for friction along this interface. It is also shown how the method can be generalized to provide an estimate of the stress, given an perimentally determined discrete set of steady-state temperature measurements along the rake face of the tool, even when no friction model is specified.
Burns, T.
, Mates, S.
, Rhorer, R.
, Whitenton, E.
and Basak, D.
(2015),
Inverse Method for Estimating Shear Stress in Machining, Journal of the Mechanics and Physics of Solids, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915306
(Accessed October 9, 2025)