NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Interfacial magnetic anisotropy from a 3-dimensional Rashba substrate
Published
Author(s)
Junwen Li, Paul M. Haney
Abstract
We study the magnetic anisotropy which arises at the interface between a thin film ferromagnet and a 3-d Rashba material. The 3-d Rashba material is characterized by the spin-orbit strength $\alpha$ and the direction of broken bulk inversion symmetry $\hat n$. We find an in-plane uniaxial anisotropy in the $\hat{z}\times\hat{n}$ direction, where $\hat z$ is the interface normal. For realistic values of $\alpha$, the uniaxial anisotropy is of a similar order of magnitude as the bulk magnetocrystalline anisotropy. Evaluating the uniaxial anisotropy for a simplified model in 1-d shows that for small band filling, the in-plane easy axis anisotropy scales as $\alpha^4$ and results from a twisted exchange interaction between the spins in the 3-d Rashba material and the ferromagnet. For a ferroelectric 3-d Rashba material, $\hat n$ can be controlled with an electric field, and we propose that the interfacial magnetic anisotropy could provide a mechanism for electrical control of the magnetic orientation.
Li, J.
and Haney, P.
(2016),
Interfacial magnetic anisotropy from a 3-dimensional Rashba substrate, Applied Physics Letters, [online], https://doi.org/10.1063/1.4959182
(Accessed October 15, 2025)