NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
An Intelligent Machine Monitoring System for Energy Prediction Using a Gaussian Process Regression
Published
Author(s)
Sudarsan Rachuri, Moneer M. Helu
Abstract
Recent advances in machine automation and sensing technology offer new opportunities for continuous condition monitoring of an operating machine. This paper describes an intelligent machine monitoring framework that integrates and utilizes data collection, management, and analytics to derive an adaptive predictive model for the energy usage of a milling machine. This model is designed using a Gaussian Process (GP) regression algorithm, which is a flexible regression method that also provides an uncertainty estimate. To improve computational efficiency, we propose a Collective Gaussian Process (CGP) in which the overall energy prediction is made by constructing local GP models weighted by probability distribution functions obtained using the Gaussian Mixture Model (GMM) technique. Finally, we demonstrate the ability of the proposed monitoring framework to construct an energy prediction model to predict the energy used to machine a part.
Rachuri, S.
and Helu, M.
(2014),
An Intelligent Machine Monitoring System for Energy Prediction Using a Gaussian Process Regression, IEEE International Conference on BigData 2014, Washington, DC, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=916364
(Accessed October 9, 2025)