An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Inkjet Metrology II: Resolved Effects of Ejection Frequency, Fluidic Pressure and Droplet Number on Reproducible Drop-on-Demand Dispensing
Published
Author(s)
R M. Verkouteren, Jennifer R. Verkouteren
Abstract
We report highly reproducible gravimetric and optical measurements of microdroplets enabled by fluidic pressure feedback control and state-of-the-art measurement systems that lend new insights into the process of drop-on-demand (DOD) printing. Baseline fluidic pressure within the DOD dispenser was controlled to within 0.02 hPa, enabling long-term stability in dispensed droplet mass with observed variations between 0.6 % and 1.6 % (RSD) for isobutanol. With mass, the high precision of velocity measurement enabled consistent determination of droplet kinetic energy, which governed baseline behavior. Mass and velocity were influenced in a non-linear manner by the frequency of droplet ejection, the fluidic pressure applied, and the number of droplets dispensed. Non-linear mass effects were attributable to acoustic resonances, energy partitioning, and pressure wavelets created during first-drop formation, although mechanistic clarity is far from complete.
Verkouteren, R.
and Verkouteren, J.
(2011),
Inkjet Metrology II: Resolved Effects of Ejection Frequency, Fluidic Pressure and Droplet Number on Reproducible Drop-on-Demand Dispensing, Langmuir, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=908095
(Accessed October 3, 2024)