An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Influence of Silica Fume on Diffusivity in Cement-Based Materials II. Multi-Scale Modeling of Concrete Diffusivity
Published
Author(s)
Dale P. Bentz
Abstract
Based on a set of multi-scale computer models, an equation is developed for predicting the chloride ion diffusivity of concrete as a function of water-to-cement (w/c) ratio, silica fume addition, degree of hydration, and aggregate volume fraction. Silica fume influences concrete diffusivity in several ways: 1) densifying the microstructure of the interfacial transition zone (ITZ) regions, 2) reducing the overall (bulk and ITZ) capillary porosity for a fixed degree of cement hydration, and 3) producing a pozzolanic C-S-H gel with a relative diffusivity about 25 times less than that of the C-S-H gel produced from conventional cement hydration. According to the equation and in agreement with results from the literature, silica fume is most efficient for reducing diffusivity in lower w/c ratio concretes (w/c
Bentz, D.
(2000),
Influence of Silica Fume on Diffusivity in Cement-Based Materials II. Multi-Scale Modeling of Concrete Diffusivity, Cement and Concrete Research, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860225
(Accessed October 15, 2024)