Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Influence of Scan Strategy and Process Parameters on Microstructure and Its Optimization in Additively Manufactured Nickel Alloy 625 via Laser Powder Bed Fusion

Published

Author(s)

Yigit Arisoy, Luis Criales, Tugrul Ozel, Brandon Lane, Shawn P. Moylan, Alkan Donmez

Abstract

Laser powder bed fusion (L-PBF) as an additive manufacturing process produces nearly fully dense nickel alloy 625 (IN625) parts with complex features. L-PBF generates surfaces and microstructure through directional solidification that can be controlled by scan strategies and selection of process parameters. This study provides experimental investigations on microstructure formation including sizes of cellular grains and growth directions of columnar grains on the nickel alloy 625 test coupons. The effects of process parameters including laser power, scan velocity, hatch distance and scan strategy that produce various solidification cooling rates and thermal gradients during the process, which also contribute to resultant microstructure, have been analyzed. Optimization studies are conducted on several objectives to improve the productivity while controlling the process effects on the resultant microstructure using response surface regression, desirability functions, and multi-objective genetic algorithm optimization.
Citation
International Journal of Mechatronics and Manufacturing Systems
Volume
90

Keywords

Additive manufacturing, Selective laser melting, Laser powder bed fusion, Microstructure, Nickel alloy IN625

Citation

Arisoy, Y. , Criales, L. , Ozel, T. , Lane, B. , Moylan, S. and Donmez, A. (2016), Influence of Scan Strategy and Process Parameters on Microstructure and Its Optimization in Additively Manufactured Nickel Alloy 625 via Laser Powder Bed Fusion, International Journal of Mechatronics and Manufacturing Systems, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=921777 (Accessed April 19, 2024)
Created September 22, 2016, Updated October 12, 2021