NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
The increase in conductance of a gold single atom chain during elastic elongation
Published
Author(s)
Francesca Tavazza, Shmuel Barzilai, Douglas T. Smith, Lyle E. Levine
Abstract
The conductance of monoatomic gold wires has been studied using ab initio calculations and the transmission was found to vary with the elastic strain. Counter-intuitively, the conductance was found to increase for the initial stages of the elongation, where the structure has a zigzag shape and the bond angles increase from 140° toward 160°. After a certain elongation limit, where the angles are relatively high, the bond length elongation reverses this trend and the conductance decreases. These simulations are in good agreement with previously unexplained experimental results.
Tavazza, F.
, Barzilai, S.
, Smith, D.
and Levine, L.
(2013),
The increase in conductance of a gold single atom chain during elastic elongation, Journal of Physics: Condensed Matter, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910554
(Accessed October 22, 2025)