Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Impact of molecular mass on the elastic modulus of polystyrene thin films

Published

Author(s)

Jessica M. Torres, Christopher Stafford, Bryan D. Vogt

Abstract

Euler wrinkling was used to determine the elastic modulus at ambient temperature of polystyrene (PS) films of varying thickness and relative molecular mass (Mn). A range of Mn from 1.2 kg/mol to 990 kg/mol was examined to determine if the molecular size impacts the mechanical properties at the nanoscale. Ultrathin films exhibited a decrease in modulus for all molecular masses studied here compared to the bulk value. For Mn > 3.2 kg/mol, the fractional change in modulus was statistically independent of molecular mass and the modulus began to deviate from the bulk as the thickness is decreased below ≈50 nm. An order of magnitude decrease in the elastic modulus was found when the film thickness was ≈15 nm, irrespective of Mn below 3.2 kg/mol. However, an increase in the length scale for nanoconfinement was observed as the molecular mass was decreased below this threshold. The modulus of thin PS films with a molecular mass of 1.2 kg/mol deviated from bulk behavior when the film thickness was decreased below ≈ 100 nm. This result illustrates that the modulus of thin PS films does not scale with molecular size. Rather, the quench depth into the glass appears to correlate well with the length scale at which the modulus of the films deviates from the bulk, in agreement with molecular simulations from de Pablo and coworkers (Journal of Chemical Physics 2005, 122 (14), 144712) and recent experimental work by Vogt and coworkers (ACS Nano, 2009, 3 (9) 2677).
Citation
Polymer
Volume
51
Issue
18

Keywords

modulus, ultrathin, polymer, film, wrinkling

Citation

Torres, J. , Stafford, C. and Vogt, B. (2010), Impact of molecular mass on the elastic modulus of polystyrene thin films, Polymer, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=903960 (Accessed April 18, 2024)
Created July 30, 2010, Updated October 12, 2021