NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide
Published
Author(s)
James A. Bartz, Cynthia J. Zeissler, V. V. Fomenko, Mark S. Akselrod
Abstract
Fluorescent Nuclear Track Detector (FNTD) technology was tested as an imaging and spectroscopic tool for radionuclide analysis. This investigation intended to distinguish between characteristic α-particles of 239Pu (5.2 MeV), 234U (4.8 MeV) and 238U (4.2 MeV). FNTDs are Al2O3:C,Mg single crystals with color centers that undergo radiochromic transformation. FNTD readout is non-destructive and is performed with laser scanning confocal fluorescent microscopy. Ionization events register in the detector as bright fluorescent features on a weak fluorescent background. Images were acquired at several incrementing depths in the detector to produce 3D data sets. Spectroscopic information was obtained by measuring α-particle range in the detector after 3D image reconstruction. The resolution of this technique is fundamentally limited by particle range straggling (about 3.8 % (k=1) at these α-particle energies). The spectroscopic line-width as full width at half maximum (FWHM) was determined to be 0.4 MeV enabling discrimination between the isotopes of interest.
Bartz, J.
, Zeissler, C.
, Fomenko, V.
and Akselrod, M.
(2013),
An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide, Radiation Measurements, [online], https://doi.org/10.1016/j.radmeas.2013.01.041
(Accessed October 8, 2025)