NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Hyper-Ramsey spectroscopy of optical clock transitions
Published
Author(s)
Christopher W. Oates, V. I. Yudin, A. V. Taichenachev, Zeb Barber, Nathan D. Lemke, Andrew D. Ludlow, U Sterr, Ch. Lisdat, F Riehle
Abstract
We present nonstandard optical Ramsey schemes that use pulses individually tailored in duration, phase and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties can be radically suppressed (by two to four orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. atom interferomters and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case, these frequency shifts can be suppressed considerably below a fractional leel of 10-17. Moreover, our approach opens the door for high-precision optical clocks based on direct frequency spectroscopy.
Oates, C.
, Yudin, V.
, Taichenachev, A.
, Barber, Z.
, Lemke, N.
, Ludlow, A.
, Sterr, U.
, Lisdat, C.
and Riehle, F.
(2010),
Hyper-Ramsey spectroscopy of optical clock transitions, Physical Review A, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906618
(Accessed October 2, 2025)