Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Hot-Electron Femtochemistry at Surfaces: On the Role of Multiple Electron Processes in Desorption

Published

Author(s)

John William Gadzuk

Abstract

Aspects of molecular processes at surfaces due to sub-ps laser pulses of visible light are discussed here. Within the limits of the standard two-temperature model describing the temporatl evolution of fs laser-excited substrate electrons, a theoretical contribution to our understanding of desorption induced by fs laser stimulation is presented which includes, in a rudimentary way, multiple inelastic hot-electron scattering from the adsorbate. Results of the present modelsuggest that the degree of electron multiplicity (significantly less than 10) in fs-laser induced desorption is not as great as implied by previous DIMET (=desorption induced by multiple electronic transition) or stochastic friction models.
Citation
Chemical Physics
Volume
251
Issue
No. 1-3

Keywords

DIMET, femtochemistry, hot electrons, laser desorption

Citation

, J. (2000), Hot-Electron Femtochemistry at Surfaces: On the Role of Multiple Electron Processes in Desorption, Chemical Physics (Accessed July 27, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created January 1, 2000, Updated February 19, 2017