Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

High Thermal Stability of Exchange-Biased Bilayers and Bottom Giant Magnetoresistive Spin Valves Using an α-Fe2O3 Antiferromagnetic Layer

Published

Author(s)

S Bae, J H. Judy, P J. Chen, William F. Egelhoff Jr., S Zum

Abstract

The thermal stability of antiferromagnetic a-Fe2O3 exchange-biased bilayers and bottom giant magnetoresistive (GMR) spin-valve has been investigated experimentally at various ambient temperatures. An a-Fe2O3 exchange biased bilayer exhibited a high blocking temperature, Tb, of 390 degree C, and a bottom spin-valve possessed stable GMR performance above 350 degree C. The Tb of a-Fe2O3 exchange biased bilayers depended strongly on the adjacent ferromagnetic material and the number of measurements. In addition, increasing mean grain size and enhancing (104) and (110) cyrstalline texture of a-Fe2O3 increased Tb by up to 23%.
Citation
Applied Physics Letters
Volume
78
Issue
No. 26

Keywords

giant, iron oxide, magnetoresistance, stability, thermal

Citation

Bae, S. , Judy, J. , Chen, P. , Egelhoff Jr., W. and Zum, S. (2001), High Thermal Stability of Exchange-Biased Bilayers and Bottom Giant Magnetoresistive Spin Valves Using an &#945;-Fe<sub>2</sub>O<sub>3</sub> Antiferromagnetic Layer, Applied Physics Letters (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created May 31, 2001, Updated October 12, 2021
Was this page helpful?